Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites

نویسندگان

  • George Kastellakis
  • Alcino J. Silva
  • Panayiota Poirazi
چکیده

Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1) learning of a single associative memory, (2) rescuing of a weak memory when paired with a strong one, and (3) linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

Stabilization of dendritic arbor structure in vivo by CaMKII.

Calcium-calmodulin-dependent protein kinase II (CaMKII) promotes the maturation of retinotectal glutamatergic synapses in Xenopus. Whether CaMKII activity also controls morphological maturation of optic tectal neurons was tested using in vivo time-lapse imaging of single neurons over periods of up to 5 days. Dendritic arbor elaboration slows with maturation, in correlation with the onset of CaM...

متن کامل

Dendritic excitability and neuronal morphology as determinants of synaptic efficacy.

The ability to trigger neuronal spiking activity is one of the most important functional characteristics of synaptic inputs and can be quantified as a measure of synaptic efficacy (SE). Using model neurons with both highly simplified and real morphological structures (from a single cylindrical dendrite to a hippocampal granule cell, CA1 pyramidal cell, spinal motoneuron, and retinal ganglion ne...

متن کامل

Development of modified cable models to simulate accurate neuronal active behaviors.

In large network and single three-dimensional (3-D) neuron simulations, high computing speed dictates using reduced cable models to simulate neuronal firing behaviors. However, these models are unwarranted under active conditions and lack accurate representation of dendritic active conductances that greatly shape neuronal firing. Here, realistic 3-D (R3D) models (which contain full anatomical d...

متن کامل

Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue

We consider the combined effects of active dendrites and structural plasticity on the storage capacity of neural tissue. We compare capacity for two different modes of dendritic integration: (1) linear, where synaptic inputs are summed across the entire dendritic arbor, and (2) nonlinear, where each dendritic compartment functions as a separately thresholded neuron-like summing unit. We calcula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016